找回密码
 注册
搜索

2017国家公务员考试行测备考:极限思想之和定最值

一、知识铺垫
1、什么是极限思想
所谓极限的思想,是指用极限概念分析问题和解决问题的一种数学思想。如一条船顺水而下用时t1,逆流而上用时t2,则当水速增大时,t1+t2如何变化?当水速增大时,t1会变小,而t2会变大,但是,t1与t2,哪个变化大不知道,所以t1+t2如何变化也不清楚。此时如果改用极限的思想来思考的话就会比较简单,假设水速增大到无限大,则此船肯定回不来了,即t2无限大,此时虽然t1变小,但相对于t2而言,t1的变化幅度要小得多。所以,t1+t2变大了。
2、适用极限思想的题的题型特征
题干或问法中出现最大或最小、最多或最少、至多或至少。
3、极限思想的核心:凑、均、等、接近
二、极限思想之和定最值的应用
1、什么是和定最值
和定最值:多个数的和一定,求其中某个数的最大或最小值问题。
2、和定最值中的6种问法及对应的解题要点
①求最大量的最大值:让其他值尽量小。
例:5个箱子总重50公斤,且重量排在前三位的箱子总重不超过重量排在后三位的箱子总重的1.5倍,问最重的箱子重量最多是多少斤?
②求最小量的最小值:让其他值尽量大。
例:6个数的和为48,已知各个数各不相同,且最大的数是11分,则最小数最少是多少?
③求第N大的数的最大值(N即不是最大,也不是最小,如第二大的数的最大值):让其他值尽量小。
例:有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,且分得鲜花数最多的人不超过7朵,则分得鲜花第二多的人最多分得几朵鲜花?
④求第N大的数的最小值(N即不是最大,也不是最小,如第二大的数的最大值):让其他值尽量大。
⑤求最大量的最小值:让各个分量尽可能的“均等”,且保持大的量仍大、小的量仍小。
例:现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最多的人至少分得几朵鲜花?
⑥求最小量的最大值:让各个分量尽可能的“均等”,且保持大的量仍大、小的量仍小。
例:现有21朵鲜花分给5人,若每个人分得的鲜花数各不相同,则分得鲜花最少的人最多分得几朵鲜花?
【中公小结】一般情况下,第一种情况,题干中会出现所求量与其他量之间的不等式关系;第二种情况,题干中最大数的值有一定的限制条件;后四种情况,题干中会出现“这些数各不相同”的条件。
您需要登录后才可以回帖 登录 | 注册

  • 0 关注
  • 5 粉丝
  • 18 帖子
 

天健社区公众号